If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49z^2+40=41
We move all terms to the left:
49z^2+40-(41)=0
We add all the numbers together, and all the variables
49z^2-1=0
a = 49; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·49·(-1)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*49}=\frac{-14}{98} =-1/7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*49}=\frac{14}{98} =1/7 $
| 4x+30+90+9x-5=180 | | 2(x-5)^2=36 | | 22=1/4x+(-3) | | 9x^2+24x+7=-9 | | -11-4x+5x=3 | | 14=7(y–10) | | -x+80=4x+30 | | 1.4/2.5=f/25 | | -5(1/5x-5)=-(x-20) | | 4.6=n+6.5 | | 3(2x+22)=96 | | 4q+8=8 | | 7.5+5f+16.2+2f=7f+23.7 | | 124=61/x | | 3x=11=2x+5 | | x-16/3=3x | | 14+(x-3)^2=-18 | | 3(x^2-1)-10=5 | | -7c+19=-19-9c | | 3x+12+4x-8=180 | | 3(a+5)=15 | | 15=t+100 | | X-5x+7=100 | | (2x-9)+(10x+9)=180 | | 28+4x=90 | | -x-24-3x=12 | | J=12-1k | | 7n-19=569 | | -4-5k=6(7+3k) | | c=714c= | | 21x=0.7 | | 24=7x+2x |