If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-100=0
a = 49; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·49·(-100)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*49}=\frac{-140}{98} =-1+3/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*49}=\frac{140}{98} =1+3/7 $
| 65-4x=61 | | 3x-4=15(x-2) | | 4=t-9 | | 3x+5-4x=15 | | -1.4y=2.8 | | -2(3x+7)-(3x-9)=4 | | (3)x=1500 | | 4.9t^2+345t=621 | | 2x+50=5x+38 | | 2(x-15)=30 | | 6x+29x-8=7(5x+5) | | 5/7x+28=8 | | -30=5x1−30=5(x+1) | | 4x+8x-1=3(4x+4) | | 305x1−30=5(x+1) | | -445=75x-820 | | 6.4g+9=4.4g+21 | | 174=42-x | | 2x+38=82 | | x-14=4x+31 | | -6x-145=8x+51 | | (4x-33)=(3x+12) | | -7x-44=16-3x | | -4x-33=12-7x | | -12-6x=14-4x | | x/2+x/3=x/4 | | 5-2(x+1)=9 | | -9+3x=4x+13 | | 2x-40=76 | | x^2.x=18+3x | | p+12=13 | | -9(u+3)=-2u+1 |