If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2-28x-4=0
a = 49; b = -28; c = -4;
Δ = b2-4ac
Δ = -282-4·49·(-4)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28\sqrt{2}}{2*49}=\frac{28-28\sqrt{2}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28\sqrt{2}}{2*49}=\frac{28+28\sqrt{2}}{98} $
| 13x-33=7(2- | | -8w+32=-2w+38 | | 2x^2-14x-84=0 | | 38/15=-12/5b+1/3-7/5 | | 3x+19=-2x+116 | | 12x2+69x+45=0 | | 5(3n+1)=8(5n+3)+4 | | 3y+52=180 | | 2x12=5 | | -4(-5-3v)+2=-7(v+5) | | 2x(x-1)-3(x+2)=8-4x | | C=500+0.75n | | -19x-11=-12x+34 | | -3+15+6x=-3(-x-5) | | b+5/22=1 | | 1/3(2x-4)+5=(X+1)-2/3 | | 2y-120=180 | | 19/4-7a=-1/4a+3/2 | | 35=6x+4 | | 2u−u=11 | | 6h+h=7 | | -2t^2+10t+12=0 | | 19/4-31/2x=-1/4x+3/2 | | 3y+52=12y+7 | | 3v-3=4v+8 | | 6(2x-8)-4=6(x-4)+14 | | 1/2x-2/3=-19/42 | | 50+0.30x=30+0.70x | | -4(-2x+5)=-4(-5x+6)-8 | | 2a-10=4a-(2a-10) | | 2/X^2+4x-12=5/x+6-3/x-2 | | 12x-44=6x-38 |