If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49-2/3x=31-1/6x
We move all terms to the left:
49-2/3x-(31-1/6x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-2/3x-(-1/6x+31)+49=0
We get rid of parentheses
-2/3x+1/6x-31+49=0
We calculate fractions
(-12x)/18x^2+3x/18x^2-31+49=0
We add all the numbers together, and all the variables
(-12x)/18x^2+3x/18x^2+18=0
We multiply all the terms by the denominator
(-12x)+3x+18*18x^2=0
We add all the numbers together, and all the variables
3x+(-12x)+18*18x^2=0
Wy multiply elements
324x^2+3x+(-12x)=0
We get rid of parentheses
324x^2+3x-12x=0
We add all the numbers together, and all the variables
324x^2-9x=0
a = 324; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·324·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*324}=\frac{0}{648} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*324}=\frac{18}{648} =1/36 $
| (2x+10)+(2x+15)=180 | | 3x-6+x=6x+8 | | 8x+(-7)=57 | | 3x+-9=2x+4 | | 14(3x-1)-x-1=68 | | 8x(-7)=57 | | 4+2h=4h | | -6+2r=9-3r | | 0=a(-4-0)^2+3 | | -10u=-6u+4 | | y=+38 | | -8+7h=9h | | -8-4y=-3y | | 5=y5 | | 7c+10=59 | | -7j=-9j-4 | | 7y=81−17.3y= | | 2x(3x-2)=5(2-3x) | | t=0.2t | | 13x+4=-5 | | 7a+3=7a-5 | | 36=6(2-8x) | | 3t-2/3+2t+3/3=t+7/6 | | c/3−6=2 | | -2=24x-50 | | 10c+2=4c+14 | | s/2+20=26 | | -.6x+.3+x=2/5 | | -200=8(4a-7) | | 5×(6-x)-30=-9×(x+4) | | 78−j=74 | | -1+10(x+5)=10(2x+10)+9 |