If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2-13x-1=0
a = 48; b = -13; c = -1;
Δ = b2-4ac
Δ = -132-4·48·(-1)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-19}{2*48}=\frac{-6}{96} =-1/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+19}{2*48}=\frac{32}{96} =1/3 $
| 10+2x=0+4x | | 6x-2x=-8+11 | | 21/3×11/2=a | | x+x+x+4=10 | | 3(3x+6)=44 | | y/5+1=3 | | 15=x/3+8 | | 5x-5=4x÷-1 | | -n+1-2n=7 | | 5x-21=3x-9 | | 4-3(x-2)=-25 | | 5x-2x+5=x+17 | | x+2x+5-3x=5 | | 5c=7(2c+3)-13 | | 5x-10-3x-2x=1 | | -2-x=6x+5 | | -4x+9+3x=-9 | | -1+3x=x+7 | | 17=(2x+9) | | 2(2x+3)-(x-7)=10 | | |2y-3|=9 | | -6(3-x)=84 | | -4x+1=2-5x | | X=178-9x | | 12y-31=9 | | 4(x+3)=72 | | 4+8x=6x-6 | | 4t-5=3t+6 | | 3(5g-7)-8=(15g-7)-8 | | 8x-4=12+6x | | 5t^2+50t-40=0 | | X^28x-9=0 |