If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2+9=50
We move all terms to the left:
48x^2+9-(50)=0
We add all the numbers together, and all the variables
48x^2-41=0
a = 48; b = 0; c = -41;
Δ = b2-4ac
Δ = 02-4·48·(-41)
Δ = 7872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7872}=\sqrt{64*123}=\sqrt{64}*\sqrt{123}=8\sqrt{123}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{123}}{2*48}=\frac{0-8\sqrt{123}}{96} =-\frac{8\sqrt{123}}{96} =-\frac{\sqrt{123}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{123}}{2*48}=\frac{0+8\sqrt{123}}{96} =\frac{8\sqrt{123}}{96} =\frac{\sqrt{123}}{12} $
| 3+6q=5+q | | 2x-8=-x1 | | 8=2(p+1) | | 4z/9+2=9 | | (n-2)=5400 | | a/3-7=12/3 | | 3x/4-7/2=1/4 | | -40=28n-8 | | -40=28n+-8 | | B/7=b+3 | | B-2=2b+16 | | x+0.28x=3520 | | ((x+11)/4)+9=-3 | | 4-7x=5(8-5x) | | x/4(x+2)=3(x−2) | | 8−3x/5=x | | -a+19=27 | | 2q+18/6=q | | 1-8n=1-5n | | 4(2x-9)=10x-8 | | -a+17=14 | | -29+a=-37 | | w-6/5=18 | | -7+6=a | | -24+a=9 | | 15-4x+1-5x=-7x-6x | | X^2+13x-3x+9=0 | | 19x+4=x+76 | | 0.75/x=0 | | -x2+14x+180=0 | | 0=3x^2-72 | | 0=v^2-90 |