4800=2(4800-280x-4x2)

Simple and best practice solution for 4800=2(4800-280x-4x2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4800=2(4800-280x-4x2) equation:



4800=2(4800-280x-4x^2)
We move all terms to the left:
4800-(2(4800-280x-4x^2))=0
We calculate terms in parentheses: -(2(4800-280x-4x^2)), so:
2(4800-280x-4x^2)
We multiply parentheses
-8x^2-560x+9600
Back to the equation:
-(-8x^2-560x+9600)
We get rid of parentheses
8x^2+560x-9600+4800=0
We add all the numbers together, and all the variables
8x^2+560x-4800=0
a = 8; b = 560; c = -4800;
Δ = b2-4ac
Δ = 5602-4·8·(-4800)
Δ = 467200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{467200}=\sqrt{6400*73}=\sqrt{6400}*\sqrt{73}=80\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(560)-80\sqrt{73}}{2*8}=\frac{-560-80\sqrt{73}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(560)+80\sqrt{73}}{2*8}=\frac{-560+80\sqrt{73}}{16} $

See similar equations:

| 5^4x=3^-x-3 | | 5.57=35-24x+4x^2 | | X+40+x+40+x/6+x/6=360 | | |4x-3|-|2x-4|=0 | | 99=x^{2}-1 | | 6r+12r-9-8r+31+r=0 | | 65=1.30x | | (4x/12)-(1)=(2x/12) | | (4x/12)-(12/12)=(2x/12) | | 2×c÷4= | | 3w+8=+12 | | 2.4/x=7.2/4.5 | | 4z+7=5z+9 | | 2/3(3x+9)=-2(2x | | 2/3(3c+9)=-2(2c+6) | | 9m^2-9m^2-504=0 | | 35x+1=5x | | –t=6.95 | | 25t=13 | | 10x+5x10=15 | | 8y-4y-4=57.32. | | 8y-4y-4=57.32 | | 12y-8y-14=68.48 | | 11+-4p=4p | | 10-(10*10)+10=x | | (x^-2-1.2^-2)^-0.5=0 | | 7(2v-1)^2-28=0 | | 28+365x=20468 | | 3283=s/100 | | 48=8u-8 | | 581917=840x+637 | | -17=3(4x+1)-2x |

Equations solver categories