46-(2c+4)=4(c+7)c

Simple and best practice solution for 46-(2c+4)=4(c+7)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 46-(2c+4)=4(c+7)c equation:



46-(2c+4)=4(c+7)c
We move all terms to the left:
46-(2c+4)-(4(c+7)c)=0
We get rid of parentheses
-2c-(4(c+7)c)-4+46=0
We calculate terms in parentheses: -(4(c+7)c), so:
4(c+7)c
We multiply parentheses
4c^2+28c
Back to the equation:
-(4c^2+28c)
We add all the numbers together, and all the variables
-2c-(4c^2+28c)+42=0
We get rid of parentheses
-4c^2-2c-28c+42=0
We add all the numbers together, and all the variables
-4c^2-30c+42=0
a = -4; b = -30; c = +42;
Δ = b2-4ac
Δ = -302-4·(-4)·42
Δ = 1572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1572}=\sqrt{4*393}=\sqrt{4}*\sqrt{393}=2\sqrt{393}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{393}}{2*-4}=\frac{30-2\sqrt{393}}{-8} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{393}}{2*-4}=\frac{30+2\sqrt{393}}{-8} $

See similar equations:

| 30-4n=6n-20 | | 9d+12+4d=–13 | | 42+-2c=5c+28 | | 6z-3=33+3z | | -2(10+n/2)=5 | | -2{6+x}=8 | | 3(7x-27)-19x=-15 | | 5n-30=3(1-2n) | | N=0.013x2-1.19(16)+28.34 | | 7b=5b-18 | | 0,5x²+2x+2=0 | | -6(g−91)=-24 | | 8(c+26)=72 | | 2a+4=4a-12 | | 4(v+13)=92 | | 2-5y+6y=53 | | 8×3x=24x | | −5(2x+4)+x+3=−8 | | 2x+6x+9=25 | | x+2=-14- | | 40-7x=-8(3+5x)-2 | | (1.75+x)+x=3.25 | | 8+11y=10 | | -8m+20=36 | | 4x-24+5x+3+7x+7=180 | | 5x+6x-7=4 | | 2(m+2)=-8+6m | | 15x-5=-47 | | 5x+23=x-5 | | -33+n=-5(n+3) | | 0.1(x+11=2(x-8) | | 15=x/6-2 |

Equations solver categories