If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x^2-90=0
a = 45; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·45·(-90)
Δ = 16200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16200}=\sqrt{8100*2}=\sqrt{8100}*\sqrt{2}=90\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{2}}{2*45}=\frac{0-90\sqrt{2}}{90} =-\frac{90\sqrt{2}}{90} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{2}}{2*45}=\frac{0+90\sqrt{2}}{90} =\frac{90\sqrt{2}}{90} =\sqrt{2} $
| k/7.4=3.6 | | -1+3x=-1/10 | | 11+y/4=23 | | 4(p+30)=36 | | 1/4(b+1)=-51 | | 8-y/3=24 | | 15.3=3(k-4) | | 2x^2-12,5=0 | | (x2−2x)2−8=7(x2−2x) | | x^2-5=56 | | y/2+7.4=-9.6 | | 0.25x^2-3x+34=0 | | x3+1=9 | | x+8=-14*3 | | 5/9w=35 | | 2n-3n=-8 | | 2(6n-2=+13 | | 6x-(-4+5)=7(6x-3) | | (x+4)^5=1024 | | -2=k+-11 | | -3=r-19 | | 1/2t=1/4 | | -2x+10=-4(5x-3) | | 14(h-1)=70 | | 6y-14=37 | | 14(h-1)=84 | | -r-2r=-3 | | -3(2x+4)=3x-12 | | 3x-7x=70 | | z^2–8z+15=0 | | (14-5x)-(8-10x)=102 | | 0.45x+x=60 |