45=(p-2)(p-2)

Simple and best practice solution for 45=(p-2)(p-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 45=(p-2)(p-2) equation:



45=(p-2)(p-2)
We move all terms to the left:
45-((p-2)(p-2))=0
We multiply parentheses ..
-((+p^2-2p-2p+4))+45=0
We calculate terms in parentheses: -((+p^2-2p-2p+4)), so:
(+p^2-2p-2p+4)
We get rid of parentheses
p^2-2p-2p+4
We add all the numbers together, and all the variables
p^2-4p+4
Back to the equation:
-(p^2-4p+4)
We get rid of parentheses
-p^2+4p-4+45=0
We add all the numbers together, and all the variables
-1p^2+4p+41=0
a = -1; b = 4; c = +41;
Δ = b2-4ac
Δ = 42-4·(-1)·41
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{5}}{2*-1}=\frac{-4-6\sqrt{5}}{-2} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{5}}{2*-1}=\frac{-4+6\sqrt{5}}{-2} $

See similar equations:

| -9a+3=9a-9 | | -2(y+1)=9 | | 3s+12=45 | | 12-z=7 | | -3(1+m)+m=2m-3 | | 5n-7=67 | | 3(1=5n)=7n-37 | | 4x+(-3)=12 | | 38=-6x+2 | | -4y^2+16y+12=0 | | -2(1-4q)=-7q-5 | | 4(x+2)-3=6x-15 | | 3^4x=15 | | -2(g=3)+1=-7g-4 | | -4x+23=71 | | 57+6=3v | | -7(x-12)=-21 | | 5z=-5(z+1)-z+1 | | h+4=3h | | -1-y=-4+y | | p-254=765 | | 4h=14 | | -5+6c=-4c-8 | | 6-5x=4x+60 | | 24-9d=10+5d | | 9.4x=4.23 | | -1+3s=4-2s | | -b+3=-2b-7 | | 81x2=9 | | 2(f+3)+1=-4f-7 | | x4+45=10 | | -4(x+2)=4(2+2x) |

Equations solver categories