458984k+1=35785(k+56)*5789k

Simple and best practice solution for 458984k+1=35785(k+56)*5789k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 458984k+1=35785(k+56)*5789k equation:


Simplifying
458984k + 1 = 35785(k + 56) * 5789k

Reorder the terms:
1 + 458984k = 35785(k + 56) * 5789k

Reorder the terms:
1 + 458984k = 35785(56 + k) * 5789k

Reorder the terms for easier multiplication:
1 + 458984k = 35785 * 5789k(56 + k)

Multiply 35785 * 5789
1 + 458984k = 207159365k(56 + k)
1 + 458984k = (56 * 207159365k + k * 207159365k)
1 + 458984k = (11600924440k + 207159365k2)

Solving
1 + 458984k = 11600924440k + 207159365k2

Solving for variable 'k'.

Combine like terms: 458984k + -11600924440k = -11600465456k
1 + -11600465456k + -207159365k2 = 11600924440k + 207159365k2 + -11600924440k + -207159365k2

Reorder the terms:
1 + -11600465456k + -207159365k2 = 11600924440k + -11600924440k + 207159365k2 + -207159365k2

Combine like terms: 11600924440k + -11600924440k = 0
1 + -11600465456k + -207159365k2 = 0 + 207159365k2 + -207159365k2
1 + -11600465456k + -207159365k2 = 207159365k2 + -207159365k2

Combine like terms: 207159365k2 + -207159365k2 = 0
1 + -11600465456k + -207159365k2 = 0

Begin completing the square.  Divide all terms by
-207159365 the coefficient of the squared term: 

Divide each side by '-207159365'.
-0.000000004827201512 + 55.99778439k + k2 = 0

Move the constant term to the right:

Add '0.000000004827201512' to each side of the equation.
-0.000000004827201512 + 55.99778439k + 0.000000004827201512 + k2 = 0 + 0.000000004827201512

Reorder the terms:
-0.000000004827201512 + 0.000000004827201512 + 55.99778439k + k2 = 0 + 0.000000004827201512

Combine like terms: -0.000000004827201512 + 0.000000004827201512 = 0.000000000000000000
0.000000000000000000 + 55.99778439k + k2 = 0 + 0.000000004827201512
55.99778439k + k2 = 0 + 0.000000004827201512

Combine like terms: 0 + 0.000000004827201512 = 0.000000004827201512
55.99778439k + k2 = 0.000000004827201512

The k term is 55.99778439k.  Take half its coefficient (27.9988922).
Square it (783.9379644) and add it to both sides.

Add '783.9379644' to each side of the equation.
55.99778439k + 783.9379644 + k2 = 0.000000004827201512 + 783.9379644

Reorder the terms:
783.9379644 + 55.99778439k + k2 = 0.000000004827201512 + 783.9379644

Combine like terms: 0.000000004827201512 + 783.9379644 = 783.937964404827201512
783.9379644 + 55.99778439k + k2 = 783.937964404827201512

Factor a perfect square on the left side:
(k + 27.9988922)(k + 27.9988922) = 783.937964404827201512

Calculate the square root of the right side: 27.9988922

Break this problem into two subproblems by setting 
(k + 27.9988922) equal to 27.9988922 and -27.9988922.

Subproblem 1

k + 27.9988922 = 27.9988922 Simplifying k + 27.9988922 = 27.9988922 Reorder the terms: 27.9988922 + k = 27.9988922 Add '-27.9988922' to each side of the equation. 27.9988922 + -27.9988922 + k = 27.9988922 + -27.9988922 Combine like terms: 27.9988922 + -27.9988922 = 0.0000000 0.0000000 + k = 27.9988922 + -27.9988922 k = 27.9988922 + -27.9988922 Combine like terms: 27.9988922 + -27.9988922 = 0.0000000 k = 0.0000000 Solving k = 0.0000000 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Simplifying k = 0.0000000

Subproblem 2

k + 27.9988922 = -27.9988922 Simplifying k + 27.9988922 = -27.9988922 Reorder the terms: 27.9988922 + k = -27.9988922 Solving 27.9988922 + k = -27.9988922 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-27.9988922' to each side of the equation. 27.9988922 + -27.9988922 + k = -27.9988922 + -27.9988922 Combine like terms: 27.9988922 + -27.9988922 = 0.0000000 0.0000000 + k = -27.9988922 + -27.9988922 k = -27.9988922 + -27.9988922 Combine like terms: -27.9988922 + -27.9988922 = -55.9977844 k = -55.9977844 Simplifying k = -55.9977844

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.0000000, -55.9977844}

See similar equations:

| 1.6a=.8a | | 13x=12-19x+-24 | | 62+19=81 | | 4ax^3+b=0 | | -27=-6z-7z | | -5x+10+6x=-16+14 | | 14.4=2(8x) | | 4578x+47753=0.576432377 | | 4=-2x+29 | | y=aw-ac^4 | | 3Xsquared+7x-6= | | .6(2-3x)=1-.3(x-4) | | 9x-2y=-10 | | f(x)=3x^2-48x | | 9x+22=3x+196 | | 11x-7=10x+9 | | ax^4+bx+1=0 | | 0.215x^2-2.86x+9.42=0 | | 479632268097522680986x+3578643368=38876(x*4678974) | | (6x+4)*(8x)= | | 8b+7b=-19 | | 12-3n=54 | | 10(s-3)=-74 | | 10x-6y=-90 | | 1000000*2=50 | | 60x^2+26x-20=0 | | 0.215x^2-2.86x+17.1=7.68 | | 457x+450=3(6x+50)*450(426884x+1) | | 10(0.1(x+-8)+-0.05(4x+-10))=0.3(10) | | 14=-4+3u | | c+15=287 | | 6d=613 |

Equations solver categories