If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45-t2=0
We add all the numbers together, and all the variables
-1t^2+45=0
a = -1; b = 0; c = +45;
Δ = b2-4ac
Δ = 02-4·(-1)·45
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*-1}=\frac{0-6\sqrt{5}}{-2} =-\frac{6\sqrt{5}}{-2} =-\frac{3\sqrt{5}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*-1}=\frac{0+6\sqrt{5}}{-2} =\frac{6\sqrt{5}}{-2} =\frac{3\sqrt{5}}{-1} $
| y=22+4X | | 360=10x+110 | | 6x-9=2x-97 | | 3z-65=2z | | (1/2y+10)+4=-1/y+5 | | 11x-93+108=180 | | 2y+17=6y+5= | | 2c-24=c | | 360=10x-150 | | (5z+8)/6=-3 | | 3w-100=w | | z/3-11=9 | | 112=4-9x | | 5(y+5)=6y-4 | | 8+z/3=8 | | 4s-8=10s-38 | | x-56=355 | | -x+4=-3x-6 | | y+6=16-4y. | | 3y-5=5y+1. | | 6x=100= | | 5x=3x+4. | | 3n/4=-5 | | 10a-27=4a+33 | | (4n+7)/9=2 | | -6x+8=-3x-1 | | x+31=3x-13 | | 10f-10=15f=20 | | X-9+x+61=180 | | 5x+1+3x+11+12x-20=180 | | -245=-45u^2 | | 0-8=-y |