45-34-2y-41y+724=-411+3y2-34-31y+22-212y-524

Simple and best practice solution for 45-34-2y-41y+724=-411+3y2-34-31y+22-212y-524 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 45-34-2y-41y+724=-411+3y2-34-31y+22-212y-524 equation:



45-34-2y-41y+724=-411+3y^2-34-31y+22-212y-524
We move all terms to the left:
45-34-2y-41y+724-(-411+3y^2-34-31y+22-212y-524)=0
We add all the numbers together, and all the variables
-(-411+3y^2-34-31y+22-212y-524)-43y+735=0
We get rid of parentheses
-3y^2+31y+212y-43y+411+34-22+524+735=0
We add all the numbers together, and all the variables
-3y^2+200y+1682=0
a = -3; b = 200; c = +1682;
Δ = b2-4ac
Δ = 2002-4·(-3)·1682
Δ = 60184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60184}=\sqrt{4*15046}=\sqrt{4}*\sqrt{15046}=2\sqrt{15046}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-2\sqrt{15046}}{2*-3}=\frac{-200-2\sqrt{15046}}{-6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+2\sqrt{15046}}{2*-3}=\frac{-200+2\sqrt{15046}}{-6} $

See similar equations:

| 17=9+8x | | (k+1)-(-2)/1-(3k-4)=-3/2 | | q=77+3 | | 33=17-5(5-1w) | | 71=y-16 | | 4y-8=-(y+1) | | 17+72=b | | 7w=w+110 | | 4v−4=8 | | 84=k+25 | | 5(8+n)=-25 | | 5(3g+4)=110 | | 7x-15x-26=-11x-1 | | 3=p-67 | | 7(v+4)=3v+72 | | Y=-1/3x-6+5 | | 2+m/12=3 | | 2=4−2c | | (3/5)x=-15 | | 441.90=2455*3*x | | 7=-3c-2= | | y+5/7=1/2 | | Y-14=-3x-18 | | -26+3x=-5+17x | | h=3*2+28.6 | | 5x-3x=50+2x | | 147=-7-10n | | 5(3g+4)÷4=27.5 | | 7=y+8y | | 11/6​​=n+​9/​​7​​ | | 0.3=x/9 | | 2x+3x-18=-8 |

Equations solver categories