45-2c+4=4(c+5)c

Simple and best practice solution for 45-2c+4=4(c+5)c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 45-2c+4=4(c+5)c equation:



45-2c+4=4(c+5)c
We move all terms to the left:
45-2c+4-(4(c+5)c)=0
We add all the numbers together, and all the variables
-2c-(4(c+5)c)+49=0
We calculate terms in parentheses: -(4(c+5)c), so:
4(c+5)c
We multiply parentheses
4c^2+20c
Back to the equation:
-(4c^2+20c)
We get rid of parentheses
-4c^2-2c-20c+49=0
We add all the numbers together, and all the variables
-4c^2-22c+49=0
a = -4; b = -22; c = +49;
Δ = b2-4ac
Δ = -222-4·(-4)·49
Δ = 1268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1268}=\sqrt{4*317}=\sqrt{4}*\sqrt{317}=2\sqrt{317}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{317}}{2*-4}=\frac{22-2\sqrt{317}}{-8} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{317}}{2*-4}=\frac{22+2\sqrt{317}}{-8} $

See similar equations:

| 7x+2+-7=21+8 | | 2h+55=-43 | | 406.71=180+0.99x | | 6-4x=6x=5x-9x-2 | | 3x-10=x+38 | | 4-7x=6-8x | | 755-175=p | | 0=2x*x*x+x+2 | | -8y-38=2(y-9) | | 15/19=x/8 | | 6x+4=9x-64 | | 0.7x-0.92=0.27 | | 15y-10y-15=46.40 | | 10=6x+2(-x+-7) | | x+4=x−12 | | 7x-11=8x+20/2 | | 2=2(r-6)-2 | | |8-4x|=28 | | 6.9=9.7-0.4x | | 7.6x-2.3x=48.8 | | 2(x+6)=3x-31 | | 0=3x+1/4x | | 4*3^x=9*8^x | | 64-48m=96(-m/2+1) | | 9(-3)-3x=-33 | | 1/2x-4=2/3x+2 | | 1-2n=- | | 175=755-p | | 3/4(n+4)=3 | | 6/11=p/2 | | 755=p-175 | | 5-3g-1=-4-2g-3 |

Equations solver categories