If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44=(2x+12)(2x+8)
We move all terms to the left:
44-((2x+12)(2x+8))=0
We multiply parentheses ..
-((+4x^2+16x+24x+96))+44=0
We calculate terms in parentheses: -((+4x^2+16x+24x+96)), so:We get rid of parentheses
(+4x^2+16x+24x+96)
We get rid of parentheses
4x^2+16x+24x+96
We add all the numbers together, and all the variables
4x^2+40x+96
Back to the equation:
-(4x^2+40x+96)
-4x^2-40x-96+44=0
We add all the numbers together, and all the variables
-4x^2-40x-52=0
a = -4; b = -40; c = -52;
Δ = b2-4ac
Δ = -402-4·(-4)·(-52)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-16\sqrt{3}}{2*-4}=\frac{40-16\sqrt{3}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+16\sqrt{3}}{2*-4}=\frac{40+16\sqrt{3}}{-8} $
| 1/5x-12=20 | | s+28=9s-8 | | 4(x+10)=-4 | | 7p-14=6p | | 3w-2(2w-7)=2(3+w)-4 | | 2(y-10)=-15y+19y | | 1/2(x+8)-10=1/4x | | 2p+19=3p | | 14x+35=105 | | 1/3x+7-7=15 | | n=8+n=1-4n | | 1/7x+5=7 | | -9r-3+8=-27 | | 6.35x+3.313x-10=12.28 | | 5x-4(2x+-5)=-10 | | 157-y=211 | | 55=(a)(2a+1) | | -3x^2-42x=10 | | -4(3v+6)=-25 | | (u−14)(u+10)=−104 | | 4x-2-3x=4=4x | | 0=5m-30 | | (2x+1)/3=-3 | | -34+8b=5(7b+2) | | 0.4x+0.21x−0.16=12.04 | | x+15+x=41 | | 9+(1-3h)=-23 | | -1+6(-1-3x)=-29-2x | | x+12.3=65.5 | | 2x+6/4=3x+9/6 | | u-25=49 | | 9+8(1-3h)=-23 |