440=x(30-0.4x)

Simple and best practice solution for 440=x(30-0.4x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 440=x(30-0.4x) equation:



440=x(30-0.4x)
We move all terms to the left:
440-(x(30-0.4x))=0
We add all the numbers together, and all the variables
-(x(-0.4x+30))+440=0
We calculate terms in parentheses: -(x(-0.4x+30)), so:
x(-0.4x+30)
We multiply parentheses
0x^2+30x
We add all the numbers together, and all the variables
x^2+30x
Back to the equation:
-(x^2+30x)
We get rid of parentheses
-x^2-30x+440=0
We add all the numbers together, and all the variables
-1x^2-30x+440=0
a = -1; b = -30; c = +440;
Δ = b2-4ac
Δ = -302-4·(-1)·440
Δ = 2660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2660}=\sqrt{4*665}=\sqrt{4}*\sqrt{665}=2\sqrt{665}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{665}}{2*-1}=\frac{30-2\sqrt{665}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{665}}{2*-1}=\frac{30+2\sqrt{665}}{-2} $

See similar equations:

| 3x+5,4=x-4,6 | | -6x^2=-9x+11 | | 5^2x-1=8^x+3 | | 9x-3=29 | | 2-2x-5=-25 | | 8a+3-2a=17 | | 10=3x2 | | (7x)-2=110 | | 3p*p+4p=20 | | 2(4x-1)=38 | | -2x10=-x-3 | | 2x+7x+9=-57 | | 55=10+2(3x-1) | | 5x^2=30-19 | | 1/3v-5/4=-6/5 | | 10y+18=15y-21+5y | | 5x+2,5=1,5-1 | | 3x-6+5x=74 | | 0.15y+0.25y-21.0005=10.5y | | 3x^2+2x+(=0 | | -4-(-8-4x)=x | | x^2=(x+3)(x−3)+9 | | x2=(x+3)(x−3)+9 | | 8(x+-9)=-2(x+41) | | 9x+36=2x+12 | | x^2+x=0.164 | | 5x-35=30 | | 12-x2=0 | | 0.9(x-0.5)=-0.6 | | 12x-27=9x+12 | | 3(2-x)=2(x-2) | | (7x-3)(8x-7)=0 |

Equations solver categories