44/6y+4/2=2y-3

Simple and best practice solution for 44/6y+4/2=2y-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 44/6y+4/2=2y-3 equation:



44/6y+4/2=2y-3
We move all terms to the left:
44/6y+4/2-(2y-3)=0
Domain of the equation: 6y!=0
y!=0/6
y!=0
y∈R
We add all the numbers together, and all the variables
44/6y-(2y-3)+2=0
We get rid of parentheses
44/6y-2y+3+2=0
We multiply all the terms by the denominator
-2y*6y+3*6y+2*6y+44=0
Wy multiply elements
-12y^2+18y+12y+44=0
We add all the numbers together, and all the variables
-12y^2+30y+44=0
a = -12; b = 30; c = +44;
Δ = b2-4ac
Δ = 302-4·(-12)·44
Δ = 3012
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3012}=\sqrt{4*753}=\sqrt{4}*\sqrt{753}=2\sqrt{753}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{753}}{2*-12}=\frac{-30-2\sqrt{753}}{-24} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{753}}{2*-12}=\frac{-30+2\sqrt{753}}{-24} $

See similar equations:

| 1x+5=6x+4 | | 18c+-2c+-17c+4=18 | | 5a+3–3a=–7 | | x/2.5=75 | | 4x+5=2x15 | | -3(5p+6)-2(2-11p)=3(7+2p) | | 4(w+2)-9=7 | | 2.5+x=37.65 | | 12=12+2v−8​ | | 74.2=7(m+2.3) | | -10=3(2x-1) | | 12c+-20c+5=-19 | | 2+6x=11-13 | | 3{4x-3(x-2)}+2x=4+6x+8 | | 5-2(x-1)=3(2x+1) | | 3f+5=323f+5=32 | | 3f+5=3 | | 10=3(k+7)-8 | | 3f+5=323f+5=3 | | 4046=1.5x | | |6+x|=10 | | 3q=2q+9 | | -n-6=14 | | 54=4v | | -6y+5+8y=10-3y | | 1.5x=6174 | | 9u+4u-5u=16 | | .5x+8=2x-4 | | 5x–4=2(x–2) | | x+(-11)=-17 | | 4x/3-2x/5+x=9 | | X^3-289x=0 |

Equations solver categories