435=X+(X+25)3X

Simple and best practice solution for 435=X+(X+25)3X equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 435=X+(X+25)3X equation:


Simplifying
435 = X + (X + 25) * 3X

Reorder the terms:
435 = X + (25 + X) * 3X

Reorder the terms for easier multiplication:
435 = X + 3X(25 + X)
435 = X + (25 * 3X + X * 3X)
435 = X + (75X + 3X2)

Combine like terms: X + 75X = 76X
435 = 76X + 3X2

Solving
435 = 76X + 3X2

Solving for variable 'X'.

Reorder the terms:
435 + -76X + -3X2 = 76X + -76X + 3X2 + -3X2

Combine like terms: 76X + -76X = 0
435 + -76X + -3X2 = 0 + 3X2 + -3X2
435 + -76X + -3X2 = 3X2 + -3X2

Combine like terms: 3X2 + -3X2 = 0
435 + -76X + -3X2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-145 + 25.33333333X + X2 = 0

Move the constant term to the right:

Add '145' to each side of the equation.
-145 + 25.33333333X + 145 + X2 = 0 + 145

Reorder the terms:
-145 + 145 + 25.33333333X + X2 = 0 + 145

Combine like terms: -145 + 145 = 0
0 + 25.33333333X + X2 = 0 + 145
25.33333333X + X2 = 0 + 145

Combine like terms: 0 + 145 = 145
25.33333333X + X2 = 145

The X term is 25.33333333X.  Take half its coefficient (12.66666667).
Square it (160.4444445) and add it to both sides.

Add '160.4444445' to each side of the equation.
25.33333333X + 160.4444445 + X2 = 145 + 160.4444445

Reorder the terms:
160.4444445 + 25.33333333X + X2 = 145 + 160.4444445

Combine like terms: 145 + 160.4444445 = 305.4444445
160.4444445 + 25.33333333X + X2 = 305.4444445

Factor a perfect square on the left side:
(X + 12.66666667)(X + 12.66666667) = 305.4444445

Calculate the square root of the right side: 17.476968973

Break this problem into two subproblems by setting 
(X + 12.66666667) equal to 17.476968973 and -17.476968973.

Subproblem 1

X + 12.66666667 = 17.476968973 Simplifying X + 12.66666667 = 17.476968973 Reorder the terms: 12.66666667 + X = 17.476968973 Solving 12.66666667 + X = 17.476968973 Solving for variable 'X'. Move all terms containing X to the left, all other terms to the right. Add '-12.66666667' to each side of the equation. 12.66666667 + -12.66666667 + X = 17.476968973 + -12.66666667 Combine like terms: 12.66666667 + -12.66666667 = 0.00000000 0.00000000 + X = 17.476968973 + -12.66666667 X = 17.476968973 + -12.66666667 Combine like terms: 17.476968973 + -12.66666667 = 4.810302303 X = 4.810302303 Simplifying X = 4.810302303

Subproblem 2

X + 12.66666667 = -17.476968973 Simplifying X + 12.66666667 = -17.476968973 Reorder the terms: 12.66666667 + X = -17.476968973 Solving 12.66666667 + X = -17.476968973 Solving for variable 'X'. Move all terms containing X to the left, all other terms to the right. Add '-12.66666667' to each side of the equation. 12.66666667 + -12.66666667 + X = -17.476968973 + -12.66666667 Combine like terms: 12.66666667 + -12.66666667 = 0.00000000 0.00000000 + X = -17.476968973 + -12.66666667 X = -17.476968973 + -12.66666667 Combine like terms: -17.476968973 + -12.66666667 = -30.143635643 X = -30.143635643 Simplifying X = -30.143635643

Solution

The solution to the problem is based on the solutions from the subproblems. X = {4.810302303, -30.143635643}

See similar equations:

| (64x^3)-y^6=0 | | X•1/5=5/6 | | -28=-8(7x+7)+7(5x-8) | | 5(9p+10)-15=320 | | 7x+0.3=14.3 | | (5y^2+9)+(8y+1)-(7y^2-2y-5)= | | 4x^2-n-3=0 | | -(-5v-6)-(v-2)=20 | | 3.5m+8=15 | | (3x^2+4x+4)-(5x+9)= | | -2+3x=34 | | -23-5= | | -145=-6(-2v+7)-7 | | 5(6+2x)=4x | | 60+4x=360 | | -3(7n+1)-6= | | (3x^2+2x-4)+(5x^2+5x+18)-(8x^2-17)= | | 3(x-5)=6x-(3a-15) | | 7m-9m+2m= | | 9/4=(×-4)/5 | | 3(-6b-8)= | | -145=-6(-2+7)-7 | | (2y+3)-(5y-1)= | | (Q/ps^3)-(r/ps^3) | | 17x+28y=316 | | (5x+2)-(2x-8)= | | 8(1+5n)=208 | | 2x-4=2m+2n | | 3c-6+2= | | -13=b/12 | | 5=a+4a | | 9(t-7)=18u |

Equations solver categories