If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x^2=84
We move all terms to the left:
42x^2-(84)=0
a = 42; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·42·(-84)
Δ = 14112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14112}=\sqrt{7056*2}=\sqrt{7056}*\sqrt{2}=84\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84\sqrt{2}}{2*42}=\frac{0-84\sqrt{2}}{84} =-\frac{84\sqrt{2}}{84} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84\sqrt{2}}{2*42}=\frac{0+84\sqrt{2}}{84} =\frac{84\sqrt{2}}{84} =\sqrt{2} $
| 3/f=1/12 | | 11m-4=3m | | A+11=2a+2 | | 5p/3–3=7 | | 9x-6=4+3x | | 3+6x(5+4)÷3-7=x | | 5n=7-3n+5 | | 4.3x-1=16x | | 90+x/2=87 | | 2x/12=3x/18 | | 4p-1=-2p | | 2(4w+)=98 | | 5p÷3-3=7 | | 7(b+6=77 | | c+74/3=6 | | n/8+84=93 | | 30=21b | | 9(t+2)=99 | | 31=4+9u | | q/8+40=45 | | 2x=7=10 | | r/4+16=18 | | c/4+16=18 | | 3w^2-4w-319=0 | | 3w^2-4w=319 | | 2x/3=4x/5 | | x+(x*18/100)=900 | | 5x-78=2x+78 | | 5x/2+3=2 | | -1.2=y/4.4 | | 6x+40+2=90 | | 5x+35=2x−10 |