If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x^2+10x=0
a = 42; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·42·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*42}=\frac{-20}{84} =-5/21 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*42}=\frac{0}{84} =0 $
| -‐x+5=10 | | 50-x-3x-2x=2100 | | 6,55x-3=16,27x+3,78 | | x-3+8x-11+x+4=180 | | -22=6+2x | | 2m+(m-3)=7m-4 | | 52=-5+3x | | 18-4x=+2 | | 78=30+4x | | 5+10x=5+10x | | x+(x+1)+(x+2)=1000 | | x+4=12* | | (x+6)^2=121 | | (6x-2)=5 | | -7x-4x=33 | | 75-x=-125 | | 3a(a+4)=-2a+7 | | 2(g+6)=–2 | | 90+36+5x+4=180 | | -2(4+3x)=1/2(8x+4) | | −b+29=−4(−8b+1) | | 100-x=-300 | | 4×(5x+3)+6=10 | | 3.75x-2=3.5x+.25 | | 2/3+3x/4=71 | | j/2+10=14 | | (4x-5)=110 | | x/3+2=½x-4 | | 15x(3)+5=120 | | j|-15=-15 | | 12x+10x+7=6x+9 | | 3f-11=1 |