If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42x-126/7x=14
We move all terms to the left:
42x-126/7x-(14)=0
Domain of the equation: 7x!=0We multiply all the terms by the denominator
x!=0/7
x!=0
x∈R
42x*7x-14*7x-126=0
Wy multiply elements
294x^2-98x-126=0
a = 294; b = -98; c = -126;
Δ = b2-4ac
Δ = -982-4·294·(-126)
Δ = 157780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{157780}=\sqrt{196*805}=\sqrt{196}*\sqrt{805}=14\sqrt{805}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-98)-14\sqrt{805}}{2*294}=\frac{98-14\sqrt{805}}{588} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-98)+14\sqrt{805}}{2*294}=\frac{98+14\sqrt{805}}{588} $
| 8(y−7)=−2(y+3) | | F(x)=2x^2-16x+3 | | 360/n=7.2 | | 7/3g=4/9 | | 3^2x-7=3^xx27 | | 8+4a=0 | | 3t-20t=-17 | | 5(3x-8)-3=5(x-2)+37 | | 5x-4-6x=20 | | 7a+2=-5 | | 42+2x=5.5x | | 10-2p=16 | | -4(d-100)=28 | | (3x+7)=(10x–22) | | x•1/3=6 | | 4r+16=8(4+r)-4(r+4) | | r/3+-7=-6 | | 3t−20t=-17 | | (42x-126)/(7x=14) | | 11k-11=11 | | k5+4=22 | | 2(-4x+5)-4x+1=49 | | -2y-9=13 | | 4+3u=14 | | 3x+2=8x-3=9x-4 | | -5p-10=8p+14 | | 32=9h-4 | | 372=x-97 | | -13=f/2-17 | | -2v+5=23 | | 1+10n=5+6n | | y-42=2y |