If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42=d(2)-22
We move all terms to the left:
42-(d(2)-22)=0
We add all the numbers together, and all the variables
-(+d^2-22)+42=0
We get rid of parentheses
-d^2+22+42=0
We add all the numbers together, and all the variables
-1d^2+64=0
a = -1; b = 0; c = +64;
Δ = b2-4ac
Δ = 02-4·(-1)·64
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*-1}=\frac{-16}{-2} =+8 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*-1}=\frac{16}{-2} =-8 $
| -5x=77 | | 4.5x×3.5(2x)=46 | | 40(n+25)=1500 | | 0=-5x+65 | | x+.28x=9727 | | 4(y-8)=4(y−8)=-20 | | 5x-3=4(5-7x)+1 | | -4y+5=-23 | | 1n/4+7=13 | | 1n÷4+7=13 | | (X+8)(x-3)=12 | | 180=5(b)^2 | | 4x+9x+9=0 | | X^2-10x=12 | | 6x^{2}=42 | | 180=6(b)^2 | | 34+116=150m | | 0=-10x+380 | | 5x4−3x+7=0 | | 50=-10x+380 | | x=6E-4 | | 10+2k=22 | | 2x(2x+4)(-x-1)=0 | | 2x²+6x+7=0 | | 92x-6=6561 | | Y=x²-12x | | F(x)=x^2-14x+19 | | 2x-42=94 | | −4y+5=−23 | | x+3.2=5.42 | | 38.5x=60x | | -6(-2w+7)= |