If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4150=(1300-100p)p
We move all terms to the left:
4150-((1300-100p)p)=0
We add all the numbers together, and all the variables
-((-100p+1300)p)+4150=0
We calculate terms in parentheses: -((-100p+1300)p), so:We get rid of parentheses
(-100p+1300)p
We multiply parentheses
-100p^2+1300p
Back to the equation:
-(-100p^2+1300p)
100p^2-1300p+4150=0
a = 100; b = -1300; c = +4150;
Δ = b2-4ac
Δ = -13002-4·100·4150
Δ = 30000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30000}=\sqrt{10000*3}=\sqrt{10000}*\sqrt{3}=100\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1300)-100\sqrt{3}}{2*100}=\frac{1300-100\sqrt{3}}{200} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1300)+100\sqrt{3}}{2*100}=\frac{1300+100\sqrt{3}}{200} $
| 5x+3.25=1+2.25x | | 4x+1=23+2x | | 10=k/4− –8 | | 10=k4− –8 | | –5+3z=–14 | | N/0.25x0.11=N | | -9-3y=6y | | 2(x7)=20 | | N+N+12+Nx2=208 | | Y=4x+1Y=-2x+4 | | x=44+44+44 | | 133+x+54=180 | | 20x-16=4x+25 | | 20x-16=4x25 | | 20x-16=4x+100 | | -13=5y=7 | | (2x)/(3)-(x-1)/(6)+(7x-1)/(4)=2(1)/(6) | | x+3x=+10+0 | | Y=11-9x | | 0.93y+2.22-0.03y=6.72. | | (x)=2x3−14x2+34x+50/x+1 | | 3(p–2)=9 | | 5x+5=3(5x | | 8x+72=4x-40 | | x+1(2x-1)=7(36) | | 18.25w=438 | | 6x-10=10x-58 | | 52(40x+10(1.5x))=47500 | | 65+x+90+50+80=180 | | 14x+4=10x+20 | | 2z+9=17 | | -6x+2x^2-20=0 |