If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40t-16t^2-16=0
a = -16; b = 40; c = -16;
Δ = b2-4ac
Δ = 402-4·(-16)·(-16)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-24}{2*-16}=\frac{-64}{-32} =+2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+24}{2*-16}=\frac{-16}{-32} =1/2 $
| 4x+3+37=180 | | 2+5(x-1)=32 | | 10x-13=x+6=180 | | 23+2x+95=180 | | 12x-1=-20/11 | | 3+6x+69=180 | | x3=270 | | 13x+2.5=8.5 | | 4.5=f-6.3 | | 10=0.15x-2.61 | | (3x+12)+78+(x+10)=180 | | x-3/8=2/5 | | (8x+18)=2 | | 343^3x+4=7^x-12 | | 15-2^x=10 | | (3n-9)(2n+12)=0 | | B=8×3.14×f | | 63/9=a | | 2(3n-4)=5n-8-2n | | 4(s+3)=3s-16+s | | 28=-4x+16 | | 7/3×4/k=-28/39 | | 5x+14+109+109=180 | | 2x2+16x+0=0 | | 5x-7=x+13+12 | | 2x^2+-16x+8=0 | | 0.5(2x-1)-2.5=0.04(x+5 | | 2x2+-16x+32=0 | | -8v-6+7=-7v-12 | | 25(5^2m/2)-125^m=0 | | -5(3k-11)=7-15k | | -19w=17w+8(-5w-11) |