40=(0.3x)x+4x

Simple and best practice solution for 40=(0.3x)x+4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40=(0.3x)x+4x equation:



40=(0.3x)x+4x
We move all terms to the left:
40-((0.3x)x+4x)=0
We add all the numbers together, and all the variables
-((+0.3x)x+4x)+40=0
We calculate terms in parentheses: -((+0.3x)x+4x), so:
(+0.3x)x+4x
We add all the numbers together, and all the variables
4x+(+0.3x)x
We multiply parentheses
0x^2+4x
We add all the numbers together, and all the variables
x^2+4x
Back to the equation:
-(x^2+4x)
We get rid of parentheses
-x^2-4x+40=0
We add all the numbers together, and all the variables
-1x^2-4x+40=0
a = -1; b = -4; c = +40;
Δ = b2-4ac
Δ = -42-4·(-1)·40
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{11}}{2*-1}=\frac{4-4\sqrt{11}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{11}}{2*-1}=\frac{4+4\sqrt{11}}{-2} $

See similar equations:

| 2m−3=3m= | | 40=0.3x²+4x | | 40=0.3x+4x | | 2−3k=20 | | -15+7.5(2d-1)=25 | | 4=2s−2 | | 2c−10=4 | | 3x-12=(x+2)3+6 | | -5/8r+13=18 | | 14.4=8.4−3t | | 3y+2.5y=-1 | | 12^6x=20 | | 4(-3x-7)=-52 | | 3y+2.5y=0 | | -2+b=29 | | 5/8r+13=18 | | 3x+2x+77=x | | -14=x÷6 | | –2=3t−8 | | r4− –10=12 | | 20-2r-5=25 | | 3x+2x-77=x | | 2x-77=x | | ⅔x-15=6 | | 3x-77=x | | 3z-1÷2z+4=1 | | 7x-33=-2 | | 6z=4z-18 | | 6 | | 20-3(2x+3)=2x-1 | | 8x-13x-46=104 | | -f(X)=X^X2+1 |

Equations solver categories