If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40=(-1/3)(9x+30)+2
We move all terms to the left:
40-((-1/3)(9x+30)+2)=0
Domain of the equation: 3)(9x+30)+2)!=0We multiply parentheses ..
x∈R
-((-9x^2-1/3*30)+2)+40=0
We multiply all the terms by the denominator
-((-9x^2-1+40*3*30)+2)=0
We calculate terms in parentheses: -((-9x^2-1+40*3*30)+2), so:We get rid of parentheses
(-9x^2-1+40*3*30)+2
We get rid of parentheses
-9x^2-1+2+40*3*30
We add all the numbers together, and all the variables
-9x^2+3601
Back to the equation:
-(-9x^2+3601)
9x^2-3601=0
a = 9; b = 0; c = -3601;
Δ = b2-4ac
Δ = 02-4·9·(-3601)
Δ = 129636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{129636}=\sqrt{36*3601}=\sqrt{36}*\sqrt{3601}=6\sqrt{3601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{3601}}{2*9}=\frac{0-6\sqrt{3601}}{18} =-\frac{6\sqrt{3601}}{18} =-\frac{\sqrt{3601}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{3601}}{2*9}=\frac{0+6\sqrt{3601}}{18} =\frac{6\sqrt{3601}}{18} =\frac{\sqrt{3601}}{3} $
| 3(x-7)+5x=51 | | 3xx2=34 | | –5n+6n=-6 | | 9x+35+10x=-3-12x-24 | | 39+7x=-11x+12 | | 49=-7t+-6 | | r+5+3r-14=35 | | –5n+6n=–6 | | 1-2(4x-8)=10 | | 32+1.5x=68-3x | | (x/5)-30=-40 | | x+1.5x=64 | | -16x-18=114 | | -2(x-8)=2x-16 | | 6n-2n+3=19 | | b+6b=25 | | 12x-7=5+1x | | 1/3*3^(4x+2)-3^(2x-5)=0 | | 3×(G-7)=2(10+g) | | 54=2x3xx | | (z+8)^2=-49 | | 7+0.30x=6+0.50x | | 25y-10=40 | | 6n−2n+3=19 | | 3^{4x+2}-3^{2x-5}=0 | | 2/3(9w-24=-10 | | 2000-3x=(0+7x) | | -5m+7=-38 | | 25x²-1=0 | | x+1.5x=160 | | (3/4x)+(2/5)=x-7/10 | | 10+2x=9-7(x+2) |