If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40/7.50m=12.50m
We move all terms to the left:
40/7.50m-(12.50m)=0
Domain of the equation: 7.50m!=0We add all the numbers together, and all the variables
m!=0/7.50
m!=0
m∈R
40/7.50m-(+12.50m)=0
We get rid of parentheses
40/7.50m-12.50m=0
We multiply all the terms by the denominator
-(12.50m)*7.50m+40=0
We add all the numbers together, and all the variables
-(+12.50m)*7.50m+40=0
We multiply parentheses
-84m^2+40=0
a = -84; b = 0; c = +40;
Δ = b2-4ac
Δ = 02-4·(-84)·40
Δ = 13440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13440}=\sqrt{64*210}=\sqrt{64}*\sqrt{210}=8\sqrt{210}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{210}}{2*-84}=\frac{0-8\sqrt{210}}{-168} =-\frac{8\sqrt{210}}{-168} =-\frac{\sqrt{210}}{-21} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{210}}{2*-84}=\frac{0+8\sqrt{210}}{-168} =\frac{8\sqrt{210}}{-168} =\frac{\sqrt{210}}{-21} $
| x/11=48/88 | | Y=20×2/3^x | | 32/24=4/x | | 1/5y+y=30 | | 3m-6=-12+2 | | a-3/3=3-a/5 | | X4+2x3-4x2+x=0 | | 6x-72=4x+16-48 | | 18x+3=-12 | | 5x-5/6+x=10 | | 18x=3=-12 | | 10x+5x=74x | | 8(x+6)=5(x+7)+4 | | 11x+15-8x=25 | | 3x+900=6 | | 25+x=26+2x | | 8x+4x+2x=1300 | | 6x-3x+2x=25 | | 2x=x^2+2x-1 | | 4x+-12=180 | | (8/5)x=(4/15) | | 40t+30=40t | | 6x(7x+8)=-120 | | 5w+7(w+4)=16 | | -4.9x^2+180x+2=0 | | 6x=35=3x+53 | | 9x-3(+x)=0 | | 5x-3x=4-12 | | 22m-17=12m+8 | | y/7=13/17 | | f+f+2f=20 | | 3x-9=2x- |