40/5x-2=48/2x+7

Simple and best practice solution for 40/5x-2=48/2x+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40/5x-2=48/2x+7 equation:



40/5x-2=48/2x+7
We move all terms to the left:
40/5x-2-(48/2x+7)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x+7)!=0
x∈R
We get rid of parentheses
40/5x-48/2x-7-2=0
We calculate fractions
80x/10x^2+(-240x)/10x^2-7-2=0
We add all the numbers together, and all the variables
80x/10x^2+(-240x)/10x^2-9=0
We multiply all the terms by the denominator
80x+(-240x)-9*10x^2=0
Wy multiply elements
-90x^2+80x+(-240x)=0
We get rid of parentheses
-90x^2+80x-240x=0
We add all the numbers together, and all the variables
-90x^2-160x=0
a = -90; b = -160; c = 0;
Δ = b2-4ac
Δ = -1602-4·(-90)·0
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25600}=160$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-160}{2*-90}=\frac{0}{-180} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+160}{2*-90}=\frac{320}{-180} =-1+7/9 $

See similar equations:

| 5-2(3x+1)=27 | | x-51=40 | | 20=2x-18 | | -4н−8=4(-3n+2) | | 2(3a-2)a=3 | | 30=-15n | | 20p^2+33p+10=0 | | 8-9x=15x+7=3x | | m+18+9=3 | | 2(p-3)+-7=-1 | | -2j-j+-2=6 | | -4=2-3x+x | | 10-4=4x-2(x-1) | | 5+5r=90 | | 4x(x+3)+11=3 | | 5x-1(8x+8)(5x+11)=180 | | 2(5x+9)=-4x | | 8+9x=-110 | | 3u+2u=-20 | | 14=5+3d | | -2(3x-1)=16 | | -14x-32=12-12x | | 10+6=15+9x-3x | | c+30-18=100 | | 4x|x+3|+11=3 | | 12=-8w+2(w-3) | | 30x=20x+20 | | 3b+4.4=-2.8 | | -4=10+2w | | 1/2-2/3=3/4-1/3y | | 11x+11+4x+18+63=180 | | 34^2=2x^2 |

Equations solver categories