If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40-9y(y=2)
We move all terms to the left:
40-9y(y-(2))=0
We multiply parentheses
-9y^2+18y+40=0
a = -9; b = 18; c = +40;
Δ = b2-4ac
Δ = 182-4·(-9)·40
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-42}{2*-9}=\frac{-60}{-18} =3+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+42}{2*-9}=\frac{24}{-18} =-1+1/3 $
| 36x+2=22x+4 | | 3•m=24 | | 2x/9=8/4 | | 3x+2x+x+90=10x | | 155+y=360 | | |4v-9|=27 | | F(-1)=-1^2+x | | –3d−15=–4d | | X=45,y | | 90+90+y+25=360 | | 13-48+3=x | | -131=-5-7(-6-6b) | | 1/3(10x+15)=11 | | 2(1x-6)=2(2x+3) | | x.12=4x+4 | | F(1.5)=-1.5^2+x | | 2/1=10/c | | 5(5)-4x=3 | | 5p=18-p | | 15x-35=7x-8 | | 6x-9+2x+13=180 | | X2-14x+8=0 | | 5x-4+4x+31=180 | | 3(2.4x+4)=4.1x+3.1x | | –72=8b | | 116=x-4(1+4x) | | 15=45^(-0.05t) | | 4x-25+6x-51+x+14=180 | | F(0)=-0^2+x | | (-3)+4x+4=3x-7-2x+(-x) | | 18(x-8)+10x=7x+39 | | 7g−g=12 |