If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40-1/22(4x)=30-1/22(3x)
We move all terms to the left:
40-1/22(4x)-(30-1/22(3x))=0
Domain of the equation: 224x!=0
x!=0/224
x!=0
x∈R
Domain of the equation: 223x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-1/224x-(-1/223x+30)+40=0
We get rid of parentheses
-1/224x+1/223x-30+40=0
We calculate fractions
(-223x)/49952x^2+224x/49952x^2-30+40=0
We add all the numbers together, and all the variables
(-223x)/49952x^2+224x/49952x^2+10=0
We multiply all the terms by the denominator
(-223x)+224x+10*49952x^2=0
We add all the numbers together, and all the variables
224x+(-223x)+10*49952x^2=0
Wy multiply elements
499520x^2+224x+(-223x)=0
We get rid of parentheses
499520x^2+224x-223x=0
We add all the numbers together, and all the variables
499520x^2+x=0
a = 499520; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·499520·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*499520}=\frac{-2}{999040} =-1/499520 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*499520}=\frac{0}{999040} =0 $
| 14=-3x+2(-3x+11) | | -1x-4=2x-10 | | (2x-7)(3x-1)=7 | | 4x^2+100=75 | | X÷6=5x= | | 3-x*10=2 | | U/8=1u= | | V÷8=9v= | | 8w=3840w= | | 7x+2(5x+16)=-70 | | 8t-6.95=24.95 | | -2(8+3x)=-5x | | 7x=(16+5) | | (7t-2)-(-t+1)=-3(1-3t) | | -6-4;z=8 | | 2s+4=59-4-2s | | 8+21k=7k+10 | | 2(5x+4)=48 | | 3x-7=6+5 | | 3x2+6x-9=0 | | 7(2e-1)-3=6=6e | | X+30-3x=20-2x | | -2x+10=3-x | | -11+6x=-x-4 | | 1/6y+2=-14 | | 4(4x+2)=104 | | 12x+10-x=5-3x | | 10z=4 | | 5-3=3-x | | (35−2x)/2=(4x+6)/3 | | 1C+20=-4c+55 | | 3/4x+1/4=2/3 |