If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40+10+(2x^2)=54
We move all terms to the left:
40+10+(2x^2)-(54)=0
We add all the numbers together, and all the variables
2x^2-4=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $
| 36-4/7=a | | -1=m1+4 | | 0.1x=800 | | (9x+9)+(9x-23)=180 | | 9x+9=9x-23 | | -40x^2+320x=0 | | b÷9b=18 | | -2x^2-18x+7=0 | | 6x+9=135-10x | | b-4b=10 | | 7x-9x+4=16 | | 0=x^2+8x+161 | | -2x^2+76x-558=0 | | x/100=27/30 | | -2x^2+76x-710=0 | | 5(x^2)-2x=16 | | u²-12u-13=0 | | 39=8x–1 | | +5(8x+4)=300 | | -4.5x*2+72=0 | | +5(8x+4)=3000 | | y-(-19)=-16 | | x-(-19)=-11 | | 2y-3y+4=21 | | (2n+3)=75 | | b3+9=10 | | 5t-4.3=11.7 | | (4x)=2x–2 | | c−(-3)=15c= | | 19=−4y−(3−4y)+3 | | 5=9x(9x-5) | | 5=9x−(9x−5) |