40+1/3x+(x-10)+(x-20)=350

Simple and best practice solution for 40+1/3x+(x-10)+(x-20)=350 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40+1/3x+(x-10)+(x-20)=350 equation:



40+1/3x+(x-10)+(x-20)=350
We move all terms to the left:
40+1/3x+(x-10)+(x-20)-(350)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x+(x-10)+(x-20)-310=0
We get rid of parentheses
1/3x+x+x-10-20-310=0
We multiply all the terms by the denominator
x*3x+x*3x-10*3x-20*3x-310*3x+1=0
Wy multiply elements
3x^2+3x^2-30x-60x-930x+1=0
We add all the numbers together, and all the variables
6x^2-1020x+1=0
a = 6; b = -1020; c = +1;
Δ = b2-4ac
Δ = -10202-4·6·1
Δ = 1040376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1040376}=\sqrt{4*260094}=\sqrt{4}*\sqrt{260094}=2\sqrt{260094}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1020)-2\sqrt{260094}}{2*6}=\frac{1020-2\sqrt{260094}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1020)+2\sqrt{260094}}{2*6}=\frac{1020+2\sqrt{260094}}{12} $

See similar equations:

| 6k-3k-3=15 | | 8=1-g | | 2c+2c-c-3=12 | | 4(g+20)-(-16)=16 | | Z+1/8=2z+7/8 | | 4b-5=4 | | 4(g+20)–-16=16 | | 6-7x-2=-38+4x-13 | | 9/m=-3 | | 8v+(-4v)=20 | | Y=4,z=1 | | |9x^2-21x+9|=9 | | 3x-4=x-1-24 | | 4c+12=-4c+78 | | 3m^2+2m-65=0 | | a+70a+10=180 | | 3t-1/4=3/4t-5 | | 2(q-5)-2=6 | | 7x+12=10x=15=180 | | -12/y=4 | | 0.045x+5.503=0.03x+5.497 | | -14=7v+4v+16 | | 6k+10k+(-2k)-10=8 | | x-7/2=13/3 | | 1/16m-9=-8 | | 9x^2-21x+9=9 | | 102=3(-6x+4) | | 20m-14m-3=3 | | 4(t-17)-6=2 | | -15=4-q | | w+1/5=11/4 | | 7.1=2.2+0.21t |

Equations solver categories