If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40+(x-20)+(x-10)-1/3x=36
We move all terms to the left:
40+(x-20)+(x-10)-1/3x-(36)=0
Domain of the equation: 3x!=0We add all the numbers together, and all the variables
x!=0/3
x!=0
x∈R
(x-20)+(x-10)-1/3x+4=0
We get rid of parentheses
x+x-1/3x-20-10+4=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-10*3x+4*3x-1=0
Wy multiply elements
3x^2+3x^2-60x-30x+12x-1=0
We add all the numbers together, and all the variables
6x^2-78x-1=0
a = 6; b = -78; c = -1;
Δ = b2-4ac
Δ = -782-4·6·(-1)
Δ = 6108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6108}=\sqrt{4*1527}=\sqrt{4}*\sqrt{1527}=2\sqrt{1527}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-2\sqrt{1527}}{2*6}=\frac{78-2\sqrt{1527}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+2\sqrt{1527}}{2*6}=\frac{78+2\sqrt{1527}}{12} $
| 74=4x+14 | | -9/7=-1/2u-8/5 | | 6=14x+12 | | 3(y+7)+4=52 | | 6x+(1-7x)=-8 | | -8x=4x-108= | | H(t)=-16t^2+15+5 | | X+17=2x+19 | | 5+8m=-83 | | -9=15+n/3 | | 160+6=180-8x | | 4k+7(-4-2k)=-2(k-2 | | 65=(11x-17)=180 | | -21=7-7a | | -0.2x+1.2=4.8+0.4x | | -8x+2x=-32+17x | | 4+0.6x=2x-0.8x+7 | | 1/2(x+6=4(x-2) | | 3(x+1/3)=4 | | 4x+x=x+7 | | 8x=208-5x= | | 7(2z+3)=91 | | 6x-3=-7x+5 | | -1.2=9x+19.62 | | 1-2(2x-3)=3-3x-2 | | 21x^2-2x-8=0 | | 7d+-d+-16d−-7d−15d=-18 | | 3x+13=-32-6 | | 7+6k=19 | | 5(u-4)=-70 | | 4-2(x+3)=-10 | | -4(u+2)=4u-4+2(5u+3) |