If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/x-1+6/3x+1=18/3x+1
We move all terms to the left:
4/x-1+6/3x+1-(18/3x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x+1)!=0We add all the numbers together, and all the variables
x∈R
4/x+6/3x-(18/3x+1)=0
We get rid of parentheses
4/x+6/3x-18/3x-1=0
We calculate fractions
12x/3x^2+(-18x+6)/3x^2-1=0
We multiply all the terms by the denominator
12x+(-18x+6)-1*3x^2=0
Wy multiply elements
-3x^2+12x+(-18x+6)=0
We get rid of parentheses
-3x^2+12x-18x+6=0
We add all the numbers together, and all the variables
-3x^2-6x+6=0
a = -3; b = -6; c = +6;
Δ = b2-4ac
Δ = -62-4·(-3)·6
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{3}}{2*-3}=\frac{6-6\sqrt{3}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{3}}{2*-3}=\frac{6+6\sqrt{3}}{-6} $
| 7+2y=(7*8y)-263 | | 1/2(12p-42)=-33 | | 2(3x-2)=2-8x+14x | | 36-2k=6k | | (x/8)/((3)/(x=4)) | | 6x+2-1=13 | | 9j+8j-4-7j=0 | | 2x+4(-x+12)=60 | | -6b-12=-7b+21 | | 2s=2s-3 | | 7r+18=54-11r | | 40x+50=6x | | .25x=9.50 | | 10/4=n/18 | | 12n-2=17n-22 | | (-3x)-10=47 | | (5-2x)/5+(x-4)/10=9/10 | | 2x^2+11x=154 | | 7x+(2x-5)=8x+2 | | 10b-b+1+3b=0 | | 1.6x+2=0.05x-10.4 | | 8p-8=10p-12 | | 4q+12=22-3q | | 4(x+2)=4+2x | | 10x+6=7x+33 | | 2w+-8=2 | | 5x-19=2(x+19) | | 1/4=3/5c | | (2y-9)-y=13 | | (x-3)^2-49=0 | | 6(z+6)=-6z+8 | | 8m-7m=m |