4/n=n-9/n

Simple and best practice solution for 4/n=n-9/n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/n=n-9/n equation:



4/n=n-9/n
We move all terms to the left:
4/n-(n-9/n)=0
Domain of the equation: n!=0
n∈R
Domain of the equation: n)!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
4/n-(+n-9/n)=0
We get rid of parentheses
4/n-n+9/n=0
We multiply all the terms by the denominator
-n*n+4+9=0
We add all the numbers together, and all the variables
-n*n+13=0
Wy multiply elements
-1n^2+13=0
a = -1; b = 0; c = +13;
Δ = b2-4ac
Δ = 02-4·(-1)·13
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{13}}{2*-1}=\frac{0-2\sqrt{13}}{-2} =-\frac{2\sqrt{13}}{-2} =-\frac{\sqrt{13}}{-1} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{13}}{2*-1}=\frac{0+2\sqrt{13}}{-2} =\frac{2\sqrt{13}}{-2} =\frac{\sqrt{13}}{-1} $

See similar equations:

| 5-6x-3x=14 | | 61x+330=45x-80 | | 8.5+4-2.5k=-24.5 | | 20x^2+10-35=0 | | (7x-1)(2x-1)=2x | | 30=x+.16x | | 5x-9=48 | | 7a+9=72 | | -31=1-4u | | 4(u-6)=-28 | | 14,100(x)=x^2-40x+9600 | | 30=-(4b-6)-4(2b-3) | | -4=-2(v+1) | | 8a^-16=-a | | 10x^2+2x-21=-5 | | x+2017=20 | | -8(y+2)=-8 | | 55/40=5x-2/6x+6 | | 11.8−2.8*t=1.3 | | 9.4=3x+x | | 2*(x+3)=(4x-1)/2+7 | | 3/x=8/3x+1 | | 8=11w-9w | | 10w-w=45 | | 2^3x=216 | | 22.5*x=8.1 | | 3x-1=1x+5 | | 3x-1=1x=5 | | -4(1+5m)-6=130 | | -24=4+4x | | 9b^-8b=-8 | | -7+4y=-3 |

Equations solver categories