4/9x=12.9x=

Simple and best practice solution for 4/9x=12.9x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/9x=12.9x= equation:



4/9x=12.9x=
We move all terms to the left:
4/9x-(12.9x)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We add all the numbers together, and all the variables
4/9x-(+12.9x)=0
We get rid of parentheses
4/9x-12.9x=0
We multiply all the terms by the denominator
-(12.9x)*9x+4=0
We add all the numbers together, and all the variables
-(+12.9x)*9x+4=0
We multiply parentheses
-108x^2+4=0
a = -108; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-108)·4
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*-108}=\frac{0-24\sqrt{3}}{-216} =-\frac{24\sqrt{3}}{-216} =-\frac{\sqrt{3}}{-9} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*-108}=\frac{0+24\sqrt{3}}{-216} =\frac{24\sqrt{3}}{-216} =\frac{\sqrt{3}}{-9} $

See similar equations:

| (x/8)+3=2 | | 14=12+2t | | 14x-47+8x-15=180 | | -(t+7)=23 | | x-2–14=-16 | | 14x-47+8x-1=180 | | 28=x/4+12 | | 3x-45=55-2x | | 14x-47=8x-15 | | b+3/18=-3 | | 1/4(8x-4=2x-4 | | 54a+3=15 | | 0.1=(x/2000+x) | | |4u-5|=|4u-7| | | 2k=13k | | 3t-3(3t-2)=-6 | | −x​2​​+3x−21=0 | | -20(a+9)=-20 | | x2+6x=0 | | -6x-2(7x+9)=22 | | 17-5p=32 | | -5p+10=15 | | 10x=4=6x=9 | | 1.35x=0.75x | | x+9+11x-3=90 | | 37=2b+11 | | 6x+6-5x=-3 | | x/3–4=-16 | | 1.2x3.4=10.6 | | x3/–4=-16 | | x2+8x=50 | | 2(c+7)=20 |

Equations solver categories