4/9x-11/18x=-2/3

Simple and best practice solution for 4/9x-11/18x=-2/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/9x-11/18x=-2/3 equation:



4/9x-11/18x=-2/3
We move all terms to the left:
4/9x-11/18x-(-2/3)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 18x!=0
x!=0/18
x!=0
x∈R
We get rid of parentheses
4/9x-11/18x+2/3=0
We calculate fractions
324x^2/1458x^2+648x/1458x^2+(-891x)/1458x^2=0
We multiply all the terms by the denominator
324x^2+648x+(-891x)=0
We get rid of parentheses
324x^2+648x-891x=0
We add all the numbers together, and all the variables
324x^2-243x=0
a = 324; b = -243; c = 0;
Δ = b2-4ac
Δ = -2432-4·324·0
Δ = 59049
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{59049}=243$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-243)-243}{2*324}=\frac{0}{648} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-243)+243}{2*324}=\frac{486}{648} =3/4 $

See similar equations:

| 0=1/5x-3 | | -13u=26 | | -4(x-1)=8(x+2) | | −10.1=u8+2.7 | | -60=-v/3 | | (7y+12)=9y | | ((9x-5)/2)-((3+2x)/3)-((8x-2)/4)=2 | | 3+x/3-3+7/2=4x+1 | | 2+4x-3x-41=15 | | 5/9x+2=1/6x=11/18x+1/3 | | 2x=2(-6) | | -6.9=-2.1+v/3 | | 3(3f-5)-2=6f-1 | | 2x-17=-24 | | 2(x+6)=3+3 | | X+.25y=100 | | 2f+7=10f–9 | | -2x+4=2(2x-10) | | 4x-10=-4x+14 | | 7p^2+4p=5p^2+8p+5 | | (2y+22)=4y | | 32=-v/3 | | -2=g+6 | | b/4+1/9=17 | | y=17/10 | | -4y^2-y+4=0 | | -3=7-h | | 1/2h=14 | | -5=-10+g | | 1/20=x+3/4 | | 1/20=x+(3/4) | | 6+3c=2c-10 |

Equations solver categories