If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/9a^2=1
We move all terms to the left:
4/9a^2-(1)=0
Domain of the equation: 9a^2!=0We multiply all the terms by the denominator
a^2!=0/9
a^2!=√0
a!=0
a∈R
-1*9a^2+4=0
Wy multiply elements
-9a^2+4=0
a = -9; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-9)·4
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*-9}=\frac{-12}{-18} =2/3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*-9}=\frac{12}{-18} =-2/3 $
| 7^x=65 | | 6^2-10x+4=0 | | -2(x+1)-2(x-1)=-8 | | (3x+14)=(9x-34) | | -4/3x+1/6=7/9 | | 666=π×r² | | (2x+11)+51=180 | | -4x+2=-6x+6 | | 0.000000000000000000000000009001=π×r² | | 5c(7)=45 | | 20a-7a-1=38 | | 8c+29c-22c+14c-4=-33 | | x/3=2,7 | | 0×1=π×r² | | 4u-11u+27u=-40 | | 0×1=π-r² | | 3f-14=f | | 27g-26g-g+8g+10g=18 | | 3-f=14 | | 6d−3=3 | | 3c+9=51 | | 8-2x=4+10x | | 8-3x=4+8x | | 10-3x=4+10x | | 9-3x=3+4x | | 9-3x=3+10x | | 9-3x=4+3x | | 9-3x=4+6x | | 9-2x=4+10x | | 9-3x=4+10x | | g2−6g=0 | | 44r-31r-12=14 |