4/8x+8=29+1/5x

Simple and best practice solution for 4/8x+8=29+1/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/8x+8=29+1/5x equation:



4/8x+8=29+1/5x
We move all terms to the left:
4/8x+8-(29+1/5x)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
4/8x-(1/5x+29)+8=0
We get rid of parentheses
4/8x-1/5x-29+8=0
We calculate fractions
20x/40x^2+(-8x)/40x^2-29+8=0
We add all the numbers together, and all the variables
20x/40x^2+(-8x)/40x^2-21=0
We multiply all the terms by the denominator
20x+(-8x)-21*40x^2=0
Wy multiply elements
-840x^2+20x+(-8x)=0
We get rid of parentheses
-840x^2+20x-8x=0
We add all the numbers together, and all the variables
-840x^2+12x=0
a = -840; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-840)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-840}=\frac{-24}{-1680} =1/70 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-840}=\frac{0}{-1680} =0 $

See similar equations:

| 8x+4-17=-53 | | 280/x=8 | | 8x^2-14x+22.5=0 | | 21/v=3 | | (3x+1)^6=64 | | 7(2s-7)=5s | | 60-2t=-20+t+t^2 | | t^2+3t-80=0 | | 5y-4=3y-7 | | 11x-x=4327.3 | | -6=3n+9=21 | | 3x+2=18x+3 | | 180x=20000 | | 14=f+8f= | | 53x-43=113 | | 12=f+7f= | | x=^5x+1=25 | | x=^x+1=25 | | 4(x+3)=5(6x-2)=+3 | | 4(x+3)=5(6x-2)+3 | | 5m+9=15-3m | | 4u-19=9(u-1) | | 4u-19=(u-1) | | 7v+8(v-7)=-26 | | 25=3*x^2 | | 4m-5(3m+10)=136 | | 3+(2x-5)=6-2x | | Y=0.6x-7(-5.9) | | (w+32)+(w+-43)+37=180 | | (w+32)+(w+32)+37=180 | | 13x-5=-3x+3 | | 2f^-9f=-2 |

Equations solver categories