If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/7k-7/6=-8-5/8k
We move all terms to the left:
4/7k-7/6-(-8-5/8k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 8k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
4/7k-(-5/8k-8)-7/6=0
We get rid of parentheses
4/7k+5/8k+8-7/6=0
We calculate fractions
(-3136k^2)/2016k^2+1152k/2016k^2+1260k/2016k^2+8=0
We multiply all the terms by the denominator
(-3136k^2)+1152k+1260k+8*2016k^2=0
We add all the numbers together, and all the variables
(-3136k^2)+2412k+8*2016k^2=0
Wy multiply elements
(-3136k^2)+16128k^2+2412k=0
We get rid of parentheses
-3136k^2+16128k^2+2412k=0
We add all the numbers together, and all the variables
12992k^2+2412k=0
a = 12992; b = 2412; c = 0;
Δ = b2-4ac
Δ = 24122-4·12992·0
Δ = 5817744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5817744}=2412$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2412)-2412}{2*12992}=\frac{-4824}{25984} =-603/3248 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2412)+2412}{2*12992}=\frac{0}{25984} =0 $
| r-2=34 | | 3x+2/5=4x-3/6 | | -48+8x=4x | | w-18=34 | | 2=10x+4 | | 3 | | 36-y=32 | | 7x-4+5x-2=14-2x-6x+7 | | 3x+(2x+10)= | | x+2+7=x/2 | | x+2+7=x/3 | | 12(g+5)=(g+9) | | (4x+8)+(224-2x)= | | k+7=16,8k–72 | | m/5+8=33 | | x+2+7=9+7 | | 30=30-2t | | 12+14x3=54 | | (x)/(6)=(15)/(18) | | 2(9x-6)=10x+4 | | 28a/28=-180/28 | | -56-3u=8 | | 2/3(6j+9)=3j=7 | | (X+1)+(4x-46)=180 | | 5(r+2)-3(r-1)=-27 | | +5y3-3y3= | | –14=10–6a | | 9⁴z-³=100 | | 3x²+8-11=0 | | 5.6g+9=3.6g+17 | | (2x-21)=(x+3) | | 4m+7+2=21 |