4/5x-3=3/10x=7

Simple and best practice solution for 4/5x-3=3/10x=7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5x-3=3/10x=7 equation:



4/5x-3=3/10x=7
We move all terms to the left:
4/5x-3-(3/10x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
4/5x-(+3/10x)-3=0
We get rid of parentheses
4/5x-3/10x-3=0
We calculate fractions
40x/50x^2+(-15x)/50x^2-3=0
We multiply all the terms by the denominator
40x+(-15x)-3*50x^2=0
Wy multiply elements
-150x^2+40x+(-15x)=0
We get rid of parentheses
-150x^2+40x-15x=0
We add all the numbers together, and all the variables
-150x^2+25x=0
a = -150; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·(-150)·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*-150}=\frac{-50}{-300} =1/6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*-150}=\frac{0}{-300} =0 $

See similar equations:

| -7(a-1)=5(a-1) | | 218=103-x | | -19=-8(-4+a)-(2a=1) | | -5(-1-3x)+6(5x-3)=32 | | 2(6+5y)=2y+8 | | 3x+48+5=5x+20+1 | | 3c+1=c|1 | | n=n+5−3 | | 144=9k | | (2-8b)=22 | | 4x​ +8=19 | | r-10.3=24.5 | | -2(x+5)+6=4 | | 4x+7/5=2 | | 2x=+6=12 | | 2(3x–4)=-2x+40 | | 5x+45=2x+5 | | 32x^2-33x+1=0 | | y+3/5=71/3 | | 4(1+5m)-2=142 | | -5x+8=3x-16 | | (x+1)(x²+x+1)=42 | | 3b+8-5b=2(4-b) | | z-8/9-1/3=5/9 | | n/2+10=20 | | 23=18+v | | -4(x+8)+7=-25 | | d+9+10=210 | | 74=-2(6r-1) | | -2(x+8=28 | | x-2+11=3x-5 | | 3x+7+9x+43=180 |

Equations solver categories