4/5x+x=1728

Simple and best practice solution for 4/5x+x=1728 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5x+x=1728 equation:



4/5x+x=1728
We move all terms to the left:
4/5x+x-(1728)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
x+4/5x-1728=0
We multiply all the terms by the denominator
x*5x-1728*5x+4=0
Wy multiply elements
5x^2-8640x+4=0
a = 5; b = -8640; c = +4;
Δ = b2-4ac
Δ = -86402-4·5·4
Δ = 74649520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{74649520}=\sqrt{16*4665595}=\sqrt{16}*\sqrt{4665595}=4\sqrt{4665595}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8640)-4\sqrt{4665595}}{2*5}=\frac{8640-4\sqrt{4665595}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8640)+4\sqrt{4665595}}{2*5}=\frac{8640+4\sqrt{4665595}}{10} $

See similar equations:

| 8y4=12 | | -5x+8=3x+24 | | 18+2x=40=x | | -16+2x=5x-1 | | -6x÷3=10 | | x+6=108 | | 3t^2-3t-20=0 | | 3x-1=2x=5 | | X^2-18x=32x-625 | | 20+2y=30 | | 6x+12=43-5x | | 10x2+11x=0 | | 8x+2=1x+2 | | m+4=5m+20 | | 9x=16−7x | | 45+45+x+x=360 | | 0x9=0 | | 4+4x7=56 | | x*2x=154 | | 4–2x+15=9x+4–2x | | 25(2x-8)=16×3x | | 182=5​(0.06m+28.80+0.10​(28.80​) | | 16-(4*(k-10*2))=0 | | r+0.3r=0 | | -32(3x-63)=16x | | 2x+7=49-x | | 2x²+4x-50=20 | | x•(x-1)•(x-2)=60 | | 5x-1+6x=32 | | −2x+3(2−x)+4(x+1)=5(1−2x)+2 | | -20+5x=-8+19x | | 25(x)2=4 |

Equations solver categories