4/5q=32q=40

Simple and best practice solution for 4/5q=32q=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/5q=32q=40 equation:



4/5q=32q=40
We move all terms to the left:
4/5q-(32q)=0
Domain of the equation: 5q!=0
q!=0/5
q!=0
q∈R
We add all the numbers together, and all the variables
-32q+4/5q=0
We multiply all the terms by the denominator
-32q*5q+4=0
Wy multiply elements
-160q^2+4=0
a = -160; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-160)·4
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*-160}=\frac{0-16\sqrt{10}}{-320} =-\frac{16\sqrt{10}}{-320} =-\frac{\sqrt{10}}{-20} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*-160}=\frac{0+16\sqrt{10}}{-320} =\frac{16\sqrt{10}}{-320} =\frac{\sqrt{10}}{-20} $

See similar equations:

| -5x+7=-9+2x | | x+19=235 | | 2x+43=x | | .h/5=8 | | 5=m-16.7 | | 4x+50⁰=2x+66⁰ | | X+8x=41 | | 2^(3x-2)=3^(2x+1) | | 4t+33.5=12.5 | | (10x+20)+(8x-2)=180 | | 3x-18=3.96 | | 8x+31=85 | | 74=8.8+p | | 60(3x-2)÷4-60(x-3)÷5=-120+60x÷3 | | 4x-14+x+85=0 | | 35+3x=4x | | 4x=28* | | 3(X-3)=7(x+1)-16 | | 8+3b=74 | | 3(X-3)=7(x | | u−94/2=2 | | 2(m-1)=2 | | 7t+16=93 | | -300=-120+60x | | 6(3x+4)=9(8x–6) | | 5(2x+4)=3(9x-8) | | 2/3x+11/3=27/10 | | 9(x+3)2=6x+3 | | X÷2=5-x÷3 | | 0.3y+5=y-9 | | -3(r−7)=−24 | | 14x=20x |

Equations solver categories