If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/5(25x+40)-1=-1/2(10x-4)
We move all terms to the left:
4/5(25x+40)-1-(-1/2(10x-4))=0
Domain of the equation: 5(25x+40)!=0
x∈R
Domain of the equation: 2(10x-4))!=0We calculate fractions
x∈R
(8x1/(5(25x+40)*2(10x-4)))+(-(-5x2)/(5(25x+40)*2(10x-4)))-1=0
We calculate terms in parentheses: +(8x1/(5(25x+40)*2(10x-4))), so:
8x1/(5(25x+40)*2(10x-4))
We multiply all the terms by the denominator
8x1
We add all the numbers together, and all the variables
8x
Back to the equation:
+(8x)
We calculate terms in parentheses: +(-(-5x2)/(5(25x+40)*2(10x-4))), so:determiningTheFunctionDomain 5x^2+8x-1=0
-(-5x2)/(5(25x+40)*2(10x-4))
We add all the numbers together, and all the variables
-(-5x^2)/(5(25x+40)*2(10x-4))
We multiply all the terms by the denominator
-(-5x^2)
We get rid of parentheses
5x^2
Back to the equation:
+(5x^2)
a = 5; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·5·(-1)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{21}}{2*5}=\frac{-8-2\sqrt{21}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{21}}{2*5}=\frac{-8+2\sqrt{21}}{10} $
| 23n=111 | | 7x=9=44 | | 23n=111n | | 7w2+w+1=0 | | 23n=11n | | -9v=8–10v | | F(x)=3x^2+x-16 | | -4t–9=-5t–4 | | 6(13.2)+5y=121 | | v=150/1 | | 4x^2-7=-4x | | 4b=12=96 | | -7–7z=-8z–6 | | -3q=-2q+4 | | (3)^3*(x)^2-7=6^1/3 | | 9x+27=-78 | | (3x+3)(3x-6)=0 | | 5m+22=14-3m | | 3f+17=68 | | -4+2b=-7+b | | 12*x=0 | | B=9/7(j-78) | | 7(9x-4)=41 | | 2*n=11=-7 | | 6y-2y=4y2 | | 8(3x-4)=44 | | X^2+y^2+12y+11=0 | | (8-x)-6=1 | | 3r-19=r+13 | | 2+n=11=-7 | | 3x+x+x=40 | | 2n+11=-7 |