4/3x+1=2x+5+x

Simple and best practice solution for 4/3x+1=2x+5+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/3x+1=2x+5+x equation:



4/3x+1=2x+5+x
We move all terms to the left:
4/3x+1-(2x+5+x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
4/3x-(3x+5)+1=0
We get rid of parentheses
4/3x-3x-5+1=0
We multiply all the terms by the denominator
-3x*3x-5*3x+1*3x+4=0
Wy multiply elements
-9x^2-15x+3x+4=0
We add all the numbers together, and all the variables
-9x^2-12x+4=0
a = -9; b = -12; c = +4;
Δ = b2-4ac
Δ = -122-4·(-9)·4
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{2}}{2*-9}=\frac{12-12\sqrt{2}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{2}}{2*-9}=\frac{12+12\sqrt{2}}{-18} $

See similar equations:

| 5a+45=10 | | -28x+56=28x+28 | | 112y(2)-63=0 | | 8x-2+11x-7=124 | | z(2)-126=-26 | | 4+6m=34 | | (9x+18)-(10x-8)=180 | | 3=x=8/7x | | 5=1-7b=-2 | | x(2)-625=0 | | 3x+5=119 | | -6x=3+21 | | 4x-4=2x+60 | | 3x(2)-108=0 | | 6-2j=12 | | 7.2x-2.7=4.5 | | 16x=250 | | -5t(2)-10t=0 | | 3x+19+5x+65=180 | | 9+5(×-2)=9-6(x-9) | | 15.35=z-1.84* | | 0=9(y+4) | | 38x+35=529 | | 11/2+1.5m=9 | | -14=2(q+-5) | | 9x-1=-27x+9 | | -3w+2/5=-7/3w-1/5 | | 2x-x+9=3x-2=16 | | 0.375x-0.5=0.4375 | | (Y-6)(y+8)=-48 | | 6x+8=-14x-1 | | (6x+1)(1-3x)=0 |

Equations solver categories