4/3x+10=4/5x+6

Simple and best practice solution for 4/3x+10=4/5x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/3x+10=4/5x+6 equation:



4/3x+10=4/5x+6
We move all terms to the left:
4/3x+10-(4/5x+6)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x+6)!=0
x∈R
We get rid of parentheses
4/3x-4/5x-6+10=0
We calculate fractions
20x/15x^2+(-12x)/15x^2-6+10=0
We add all the numbers together, and all the variables
20x/15x^2+(-12x)/15x^2+4=0
We multiply all the terms by the denominator
20x+(-12x)+4*15x^2=0
Wy multiply elements
60x^2+20x+(-12x)=0
We get rid of parentheses
60x^2+20x-12x=0
We add all the numbers together, and all the variables
60x^2+8x=0
a = 60; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·60·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*60}=\frac{-16}{120} =-2/15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*60}=\frac{0}{120} =0 $

See similar equations:

| 4/(x−3)=2/3 | | F(x)=21/15x-33 | | 2(675+80x)=2310 | | 26x-3=40 | | y2=44 | | 5h+12=6h | | 26x-40=3 | | 187=50-w | | 5x=1320 | | 5n2-7=488 | | -8t+4=-2t-4t-10 | | y-3.5=2 | | -w+216=88 | | -4(w+1)=8w-2+2(2w+3) | | 2(2y+9)=-18(y-1)-88 | | 99=242-y | | 40/55=x/100 | | -36=5(x-6)-8x | | 6g=5g-6 | | 3/2b+90)(b+45)+b=540 | | 6(x-1)/10=3(-+1)/7 | | -r+10=-3r-10 | | k+-6=23 | | 5y-1=38/2 | | 2b-9-10b=9+b | | 3(3y+1)=-24(y-1)-66 | | 24x-10=18x+5 | | p+-4=-19 | | 19-2-4y=-y-16 | | 24x-10=17x+5 | | 3(2y+1)=-3(y-1)-18 | | -12/2=x |

Equations solver categories