If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4/2d-5=3d-2/2d-5-2
We move all terms to the left:
4/2d-5-(3d-2/2d-5-2)=0
Domain of the equation: 2d!=0
d!=0/2
d!=0
d∈R
Domain of the equation: 2d-5-2)!=0We add all the numbers together, and all the variables
We move all terms containing d to the left, all other terms to the right
2d-2)!=5
d∈R
4/2d-(3d-2/2d-7)-5=0
We get rid of parentheses
4/2d-3d+2/2d+7-5=0
We multiply all the terms by the denominator
-3d*2d+7*2d-5*2d+4+2=0
We add all the numbers together, and all the variables
-3d*2d+7*2d-5*2d+6=0
Wy multiply elements
-6d^2+14d-10d+6=0
We add all the numbers together, and all the variables
-6d^2+4d+6=0
a = -6; b = 4; c = +6;
Δ = b2-4ac
Δ = 42-4·(-6)·6
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*-6}=\frac{-4-4\sqrt{10}}{-12} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*-6}=\frac{-4+4\sqrt{10}}{-12} $
| x11=3x+5 | | 22/7*x/2=18 | | x+21=5x-11 | | 2x+23=-x+50 | | 8x^2+4x=1.5 | | -8-4r=-(8+8r) | | 6x=21-3 | | x+2/3-5=22 | | 7x+15+3x=2 | | Y(n)=2n-4 | | −12a−108=108 | | 3x+3=7x+19 | | 8(2x–1)2–38(2x–1)+9= | | 37.5x=30x+4-x/4*30x | | x2-441/16=0 | | -y/5=9 | | 14=a/3 | | 3-4x=2-1-3 | | 5.6x=8.96 | | 3(x-2)-(2x+1)×2/3=0 | | X-x(-17)=3 | | x/12-1/6=42 | | 82^2=18^2-b^2 | | x/12-1/2=6 | | 3/2x+11=90 | | 5x=6(x–1) | | d/21-520=-489 | | 3-m/5=10 | | 4=a/5-8 | | 4x+59=180 | | 7x-22=4x+29 | | x/7+3=16 |