4/15c+1/5c=1/8

Simple and best practice solution for 4/15c+1/5c=1/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4/15c+1/5c=1/8 equation:



4/15c+1/5c=1/8
We move all terms to the left:
4/15c+1/5c-(1/8)=0
Domain of the equation: 15c!=0
c!=0/15
c!=0
c∈R
Domain of the equation: 5c!=0
c!=0/5
c!=0
c∈R
We add all the numbers together, and all the variables
4/15c+1/5c-(+1/8)=0
We get rid of parentheses
4/15c+1/5c-1/8=0
We calculate fractions
(-375c^2)/4800c^2+1280c/4800c^2+960c/4800c^2=0
We multiply all the terms by the denominator
(-375c^2)+1280c+960c=0
We add all the numbers together, and all the variables
(-375c^2)+2240c=0
We get rid of parentheses
-375c^2+2240c=0
a = -375; b = 2240; c = 0;
Δ = b2-4ac
Δ = 22402-4·(-375)·0
Δ = 5017600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5017600}=2240$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2240)-2240}{2*-375}=\frac{-4480}{-750} =5+73/75 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2240)+2240}{2*-375}=\frac{0}{-750} =0 $

See similar equations:

| 4.8x-6=3.8x+14 | | 4.8x+6=3.8x+3 | | 4(4-x)+6x=x+16+4 | | 2p-7(1-4p)=143 | | 4(4-x)+6x=4x+12-x | | 12(2+m)=24+m | | 5(y+6)+3=53 | | -5/3n=7 | | 5(y+6)+3=63 | | -3(3(7x-2))=-120 | | 0.6=(1-(3000/x)) | | 220=-v+293 | | 23-4(6x-2)=-5 | | 3-6(4x-6)=-3 | | 47=s+s-6+3s-4 | | 2/3h-1/4h+11=8 | | 7v-15v-17=-72 | | 4n+17=3n+37 | | 55=2(4w-3)+2w | | 7x-13=x+5-6 | | (6x+7)(6x+7)=7 | | (x)+3/3=3 | | 7y+3+5y+7=16y-14 | | a/3-7=(-10) | | (6x+9-5x+5=) | | |1/5x+1/6|+5/10=7/10 | | 1.75x-20.25x=0 | | -4p+3=3 | | |(1)/(5)x+(1)/(6)|+(5)/(10)=(7)/(10) | | 1.5b+2b=0 | | (1)/(5)x+(1)/(6)|+(5)/(10)=(7)/(10) | | 8x²+5x-3=0 |

Equations solver categories