If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+7x-2.5=0
a = 4.9; b = 7; c = -2.5;
Δ = b2-4ac
Δ = 72-4·4.9·(-2.5)
Δ = 98
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{98}=\sqrt{49*2}=\sqrt{49}*\sqrt{2}=7\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7\sqrt{2}}{2*4.9}=\frac{-7-7\sqrt{2}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7\sqrt{2}}{2*4.9}=\frac{-7+7\sqrt{2}}{9.8} $
| x+8=x+58 | | 3u=-8-u | | 4x-3+6x+12=180 | | –19s+–3s−–3s+20s=–4 | | 3(2x+8)=-37+7 | | (6-2x)=-6 | | 8(2x+7)=136 | | 6(u+5)-8u=20 | | -3j=8-2j | | -134=8x+10 | | (7v+4)=-3 | | -g=8-2g | | 9.2=4+a | | 5n−14−8n−2=−10 | | -6=-7v+5(v-4) | | 2x(x-3)=22 | | 73=10-7x | | (x+1)/3=6 | | y+9=-45 | | –45=–5g | | 0.75+0.5x=x+-0.25 | | 7x+10-3x=-50 | | 3u=6u+6 | | n7=3 | | (7m+5)=-7 | | 1=7p-8p | | 3/2p-5+9/4=7-5/4p | | 1.25(4x-5)=10 | | 3.4x=70.72 | | 6+2n=-n | | X+39=6x+84 | | 7(10)n=700 |