If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-9.8t-39.2=0
a = 4.9; b = -9.8; c = -39.2;
Δ = b2-4ac
Δ = -9.82-4·4.9·(-39.2)
Δ = 864.36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9.8)-\sqrt{864.36}}{2*4.9}=\frac{9.8-\sqrt{864.36}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9.8)+\sqrt{864.36}}{2*4.9}=\frac{9.8+\sqrt{864.36}}{9.8} $
| 4-3+14d=16d-13 | | 7=-3+x/2 | | -11-14q=-13q | | 6x+6=-36-2x | | 2x30=2x+2 | | 9(n+1)=36 | | 17-17f=-2f-9-17f | | 2(n+3)=30 | | (2x-25)=91 | | 5y+5y-1=9y+8 | | 7x-40+3x+10=90 | | f(8.5)=10 | | 0=16x^2-22x+112 | | 32=9/10x | | 2(2)/(7)/(0.6x)=(4)/(21)/0.25 | | n+2=-2n-10 | | 6x-24+4x+12=180 | | f/2+28=37 | | 4(2x-7)=2(4x-14) | | 96=6(u-83) | | 5-p+p=7p-8p | | 5x+64=12x-3 | | 12=(6x-1)-(2x+3) | | 5x+10x=2x+10x+3x | | 2.50+225x=3+350x | | 10=-x/4+7 | | 12x-30=12x+11 | | 6x-12=x+748874 | | 2.50+350x=3+225x | | 7(p-84)=56 | | 2(x-2)/3=2(x+7)/12 | | 8x-6=4(2x-3) |